Showing posts with label Electric field on equatorial line of electric dipole electric dipole. Show all posts
Showing posts with label Electric field on equatorial line of electric dipole electric dipole. Show all posts

Thursday, 11 June 2020

Electric field on equatorial line of electric dipole

 2.  For points on the equatorial plane : 

Consider an electric dipole AB. Let 2d be the dipole distance and p be the dipole moment. P is a point on the equatorial line at a distance r from the midpoint O of the dipole (Fig.).

         
Fig. Electric field at a point on equatorial line & Components

Electric field at a point P due to the charge +q of the dipole,

E1= q / [4πεo (BP^2) ]   (along BP) 

E1= q / [4πεo (r^2+d^2) ]   (along BP)     (∵BP^2 = OP^2 + OB^2)
                                                                              
Electric field (E2) at a point P due to the charge –q of the dipole

E2 = q / [4πεo (AP^2) ]   (along PA)

E2 = q / [4πεo (r^2+d^2) ]   (along PA)

The magnitudes of E1 and E2 are equal. Resolving E1 and E2 into their horizontal and vertical components (Fig.), the vertical components E1 sin θ and E2 sin θ are equal and opposite, therefore they cancel each other.

The horizontal components E1 cos θ and E2 cos θ will get added along PR.

Resultant electric field at the point P due to the dipole is
  
E = E1 cos θ + E2 cos θ  (along PR)

E = 2 E1cos θ      ( ∵  E1 = E2 )

E = q / [4πεo (r^2+d^2)]  x 2 cos θ

but cos θ = d / (r^2+d^2)^1/2

E = q / [4πεo (r^2+d^2)] x 2 d / (r^2+d^2)^1/2

E = p / [4πεo (r^2+d^2)^3/2]        (∵p = q2d)
                  
For a dipole, d is very small when compared to r

E = p / [4πεo r^3]

The direction of E is along PR, parallel to the axis of the dipole and directed opposite to the direction of dipole moment.

chapter-4 pdf notes download

PHYSICS class 12 chapter 15 pdf

Subscribe Chapter -15 PDF Download Link